FROM THE PARAMETRIC DOWN-CONVERSION TO THE RAMAN SCATTERING: NONLINEAR AND QUANTUM PHENOMENA IN LOSSY MEDIA

RADOSŁAWCHRAPKIEWICZ, WOJCIECHWASILEWSKI

INSTITUTE OF EXPERIMENTAL OPTICS, UNIVERSITY OF WARSAW, POLAND RADEKCH@FUW.EDU.PL, WWASIL@FUW.EDU.PL

O Sudden death of squeezing in lossy nonlinear media?
O What is the simplest way to solve the problem?
O What is an evolution of quantum light being created in the nonlinear process?

RAMAN SCATTERING VS. DOWN CONVERSION

$$\frac{\partial \hat{a}}{\partial t} = \frac{\hat{b}^{\dagger}}{L_{NL}}$$
$$\frac{\partial \hat{b}}{\partial t} = \frac{\hat{a}^{\dagger}}{L_{NL}}$$

	RAMAN	NONDEGENERATE SPDC
Field operators: different meaning of \hat{b}^{\dagger}	$\hat{a}^{\dagger} \underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$	$\hat{a}^{\dagger} \boxed{1} \rangle = \boxed{1} \rangle$ $\hat{b}^{\dagger} \boxed{1} \rangle = \boxed{1} \rangle$
Signal beam amplification, idler as:	Atom excitation	Extra light beam
Origin of losses	Loss of photons	Atomic depolarization

OBJECT OF INTEREST

- A) Optical Parametric Amplifier (OPA), commonly used as a source of non-classic light, generated in the spontaneous parametric down-conversion (SPDC).
- 3) Hot Rubidium vapours, a serious candidate for quantum memories, utilizing the process of the Raman scattering.

Field quadratures

Representation of the single mode squeezed state in the phase space.

Losses act as mixing with external vacuum modes. Tracking evolution of all modes becomes very difficult.

SINGLE MODE SPDC WITHOUT LOSSES

Nonclassical character of SPDC states still

severe attenuation!

manifests itself in squeezing present even after

Squeezing \neq antisqueezing

 $\langle \hat{x}^2 \rangle = \frac{1}{2} + \frac{L_A}{2L_A \pm L_{NL}} \left(e^{-(L_A^{-1} \pm 2L_{NL}^{-1})L} - 1 \right)$

Four length scales:

Nonlinear Overlap Dispersive Attenuation

MULTIMODE DESCRIPTION

Approximations and assumptions:

- 1D model, degenerate model of OPA
- Undepleted pump.
- Losses affect only SPDC light.
- Numerical results and qualitative understunding

MULTIMODE MODE SOLUTION

Three general stages of the evolution

Raman gain and attenuation.

Experimental result in Rb87 vapour.

IONS9 SALAMANCA

7-9 APRIL 2011

FIRST ORDER CORRELATION FUNCTIONS Equation of the evolution of the

correlation functions $\frac{\partial \langle \hat{a}^{\dagger} \hat{a} \rangle}{\partial z} = \frac{2}{L_{NL}} \text{Re} \langle \hat{a} \hat{a} \rangle - \frac{\langle \hat{a}^{\dagger} \hat{a} \rangle}{L_{A}}$

• They fully characterize gaussian states (SPDC quantum state remains gaussian even in the presence of losses).

O Their propagation equations can be easily formulated even in the presence of losses!

$L_{OV} = L_{NL}/10 \quad L_D = 3L_{NL}$

O Stimulated Raman Scattering.

O Simple quantum memories.

MSWER

ONE MODE SOLUTION

Applicable when $L_A < L_{OV}, \ L_D$

Stabilization

- O Generation of single photons. And afterwards...
- o ... read our results in journals:)!

REFERENCE

R. Chrapkiewicz, and W. Wasilewski, "Multimode spontaneous parametric down-conversion in a lossy medium", Journal of Modern Optics 57, 345-355 (2010).

of the correlation functions.